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Abstract 0 This paper presents systematic analyses by the finite
element method of release kinetics of a dispersed solute from various
matrixes (i.e., slab, sphere, cylinder, and convex tablet), with or without
boundary-layer resistance, into a finite or an infinite external volume.
In the case of sink conditions, the numerical results agree well with
the existing analytical solutions. For the problems of solute release
into a finite external volume, where the analytical solutions are not
available, this work has provided numerical solutions of the differential
equations describing the release kinetics, moving boundaries, and
concentration profiles. This work has also revealed the dependence
of release kinetics on the initial solute loading, the external volume,
and the boundary-layer thickness. The method presented here can
describe the entire process of diffusional release before and after the
dispersed solute has been dissolved without the pseudo steady-state
assumption and it is applicable to both small and large ratio of initial
solute loading to the solute solubility in the matrix.

Introduction
The kinetics of diffusional release of a dispersed solute,

i.e., the initial solute loading (A) is higher than the solute
solubility in the matrix (Cs), has been a subject of practical
importance in controlled drug delivery. Drug delivery
systems such as pharmaceutical solid dosage forms often
contain dispersed biologically active agents, which makes
it difficult to solve the differential equations and thus
predict the release kinetics of the agents because of a
moving boundary of the dispersed solute. The task becomes
more complicated when the solute is released from a
multidimensional dosage form, such as a convex tablet,
with boundary-layer resistance into a finite external
medium. So far, no analytical solution has been made
available for investigation of such a complex system.

In the past decades, a number of mathematical models
have been developed to describe the release kinetics of
dispersed solutes1-17 mainly for one-dimensional release
except for ref 6. The majority of the models postulate
infinite well-agitated sink, that is, no boundary layer
resistance and no solute accumulation in the release
medium due to the mathematical complication. A few
groups have considered boundary-layer resistance under
the sink condition2,3,11 and in a finite external medium.12

It must be noted that the analytical or semianalytical
solutions of the above models are only applicable to the
release process up to the time, t*, for all the dispersed
solute to dissolve,3,4,17 except for those with a pseudo
steady-state assumption.1,2,6,10,12 This is because the con-
centration distribution in the matrix at t* is nonuniform

and unknown ahead of time. For a matrix with a small
A/Cs ratio, a considerable amount of dissolved solute
remains in the matrix at time t*, whose contribution to the
release kinetics is not described by the models without a
pseudo steady-state assumption.3,4,17 To overcome the
difficulty, a linear distribution is assumed in the pseudo
steady-state approach.1,2,6,10,12 This approach has been
applied extensively for A . Cs and sink conditions or near-
sink conditions with success especially for planar geom-
etry.3,4,16 Nevertheless, when the A/Cs ratio is small, for
example, when A/Cs ) 2 or approaches 1, the real concen-
tration distribution deviates from the linear one noticeably.
As a consequence, prediction by the pseudo steady-state
approach becomes less accurate.3,4

In practice, drug release from a dosage form into a finite
volume of surrounding medium is often found. In this case,
the release rate may be reduced as a consequence of drug
accumulation in the medium, deviating from the prediction
by the models for sink conditions. Such an effect can be
expected when the drug removal from the medium is slow
or the drug solubility in the medium is minimal, typified
by drug release in the lower gastrointestinal tract where
liquid content and absorption rate are relatively low, or
from an implant or an insert into a confined cavity such
as solid tumors and root canals. Therefore, prediction of
release kinetics for these dosage forms in a finite external
volume is of more practical importance than that for sink
conditions, although both may be governed by the same
release mechanism.

The analytical solutions for solute release into a finite
volume can be found for one-dimensional release from slab,
sphere, and cylinder with a loading, A e Cs. Nevertheless,
there is no analytical solution available for release kinetics
of sphere, cylinder, and convex tablet with a boundary layer
and A > Cs in a finite volume, except that for a sphere with
assumptions of pseudo steady-state and boundary-layer
thickness much smaller than the radius of the sphere.12

This is perhaps because of the above-mentioned difficulty
involving the moving boundary of the solute, time-depend-
ent boundary condition, and nonuniform solute concentra-
tion in the matrix at t*. Therefore, numerical methods must
be applied in order to solve the differential equations for
such systems.

The objective of this work is to study the kinetics of the
entire process of diffusional release of an initially dispersed
solute from polymeric matrixes into a finite external
volume with or without the boundary-layer effect. The
finite element method, a computer-aided numerical ap-
proach, is employed to solve the differential equations. The
release profiles for matrixes of various shapes (i.e., slab,
sphere, cylinder, and convex tablet) are presented for
different A/Cs ratios and various external volumes ranging
from infinite to a small liquid/matrix volume ratio. The
evolution of solute concentration in these matrixes and the

* Corresponding author. Tel. (416)978-5272; fax: (416)978-8511;
e-mail: xywu@phm.utoronto.ca.

10.1021/js9804361 CCC: $18.001050 / Journal of Pharmaceutical Sciences © 1999, American Chemical Society and
Vol. 88, No. 10, October 1999 American Pharmaceutical AssociationPublished on Web 09/08/1999



effect of boundary-layer resistance are discussed based on
the numerical results.

Theoretical Background
It is assumed that dissolution of a dispersed solute is

rapid compared with the subsequent depletion of the solute
by diffusion. The process of diffusional release of a dis-
persed solute from a matrix can be physically visualized18

as a process of solute extraction, i.e., the solution of the
dispersed solute followed by the diffusion of the dissolved
solute. Initially, the dispersed solute is dissolved and
diffuses out from the surface layer; after a certain time,
the solute concentration in the surface layer is reduced to
the saturated level (Cs), and the extraction of the solute in
the next layer is initiated. Between the just-extracted layer
and the next layer, there exists a sharp concentration
gradient, i.e., the moving boundary of the dispersed solute,
and the concentration difference between the two layers
is A - Cs. The boundary will move inward layer by layer
continuously until all the dispersed solute is dissolved.

Since the process is diffusion-controlled, the governing
equation of the diffusion is held for the whole process no
matter whether the solute is dispersed or dissolved. The
general expression of the governing equation for a problem
of three-dimensional and homogeneous material with
boundary layer resistance in a well-mixed finite external
medium is given as follows,

where 3 is the differential operator, the suffixes 1 and 2
denote the polymeric matrix and the boundary layer, Di
and Ci are the diffusion coefficient (cm2/s) and solute
concentration (g/cm3) in these two domains, respectively.
Definition of these domains and relevant boundaries for
an arbitrary geometry is illustrated in the following
schematic diagram:

The corresponding initial and boundary conditions are

where A is the initial solute loading (g/cm3), K is the

partition coefficient, ê(t) is the moving boundary, Ω1, Ω2,
and Ω3 are the domains of the matrix, boundary layer, and
the finite external medium, respectively. Γ1 and Γ2 denote
the boundaries of Ω1 and Ω2, S2 is the area of the interface
between Ω2 and Ω3. V is the volume of the finite external
medium, and t* is the time for all the dispersed solute to
dissolve. In eqs 4 and 8,

where nx, ny, and nz are the directional cosines of the
outward normal n to the closed boundary Γi.

For a sink condition, the boundary condition described
by eq 8 is replaced by eq 10,

For the matrixes with one-dimensional release such as
a sphere, an infinite slab or an infinitely long cylinder, the
above equations can be simplified to conventional presen-
tations2-4 as illustrated in Figure 1, where ê is the moving
boundary of the dispersed solute, x is the distance, L is
the half thickness of a slab or the radius of a sphere or a
cylinder, ha is the thickness of the boundary layer, C1

x)L is
the concentration in the matrix at x ) L, C2

x)L is the
concentration in the boundary layer at x ) L, C3 is the
concentration in the bulk solution. For a system with no
boundary-layer resistance, C2 ) C3; a system in a sink with
boundary layer, C3 ) 0; and a system in a sink without
boundary layer, C2

x)L ) C2 ) C3 ) 0.
As aforementioned, the whole release process is diffu-

sion-controlled. Therefore, the computational procedures
of the finite element method developed in the previous
work19-22 for dissolved solute are still applicable to the
release of dispersed solute except that eqs 6 and 7 need to
be incorporated into the computation. Mathematically
these equations represent the instantaneous mass balance
at the diffusion moving front. Physically they can be viewed
as that, in order for the diffusion front to move a distance
δx in a time δt per unit area perpendicular to x, an excess
amount of solute, (A - Cs)δx, must be removed by diffusion.
Based on this interpretation, the computational procedures
were correspondingly modified to incorporate eqs 6 and 7.
The whole matrix domain was divided into many thin
layers. The diffusion was initiated from the most outer
layer. The solute concentration in the current thin layer
was examined at very small time intervals using an
iteration checking subroutine. Once the excess amount of
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Figure 1sSchematic diagram of moving boundary, boundary layer, and
concentration profile for a one-dimensional slab, sphere, and cylinder, where
L denotes either the half-thickness of a slab, or radius of a sphere or a cylinder;
x ) 0 stands for the midplane or the center of the matrixes.
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solute, (A - Cs)δx, had been depleted, i.e., C1 ) Cs in the
current layer, the solute diffusion in the next thin layer
was allowed. Otherwise the iteration continued until the
saturation level was reached. The amount of solute released
(Mt) at time t was obtained by subtracting the amount of
solute remained in the matrix from the initial amount of
solute. The remaining was calculated by multiplying the
solute concentration in each finite element at time t by the
volume of the element.

Results and Discussion
To verify the computational procedures and results,

release profiles of a dispersed solute from a one-dimen-
sional slab, sphere, and cylinder into a sink were first
calculated and compared with the available analytical
solutions. Release kinetics for three basic geometries and
convex tablet in different external volumes and its depen-
dence on the boundary-layer resistance and initial solute
concentration were then studied.

One-Dimensional Release and Verifications(a)
SlabsFigure 2 depicts the amount of the drug released per
unit surface area of a slab as a function of square root of
time. Evidently, the results of this work agree well with
the analytical solution by Paul and McSpadden3 at earlier
stage, i.e., t e t*. At a later stage, i.e., t > t*, the analytical
solution is no longer applicable, whereas the finite element
solution continuously describes the rest of the release
process. When the A/Cs ratio is large, e.g., A/Cs ) 10 or 5,
the analytical solution may be extended to t > t* with an
acceptable error, as only a small portion of the solute
remains in the matrix. Nevertheless, the error can be
significant when the A/Cs ratio is small. As will be
discussed in section d), there is still about 50% of the solute
unreleased at t* for A/Cs ) 1.2 and 28% for A/Cs ) 2. This
implies that up to 50% of the solute is released by a

different mechanism (i.e., no moving boundary). The re-
lease kinetics of this portion of the solute cannot be
described by the analytical solution. Therefore, the straight
line predicted by the model was linearly extrapolated and
linked with the horizontal line of 100% release.3 The
experimental data showed that the release profile is a
asymptotic curve approaching to the 100% line,3 especially
for small A/Cs ratios. This experimental observation is
predicted by the numerical solutions of this work (Figure
2a).

Figure 3a compares the concentration distribution of a
solute in the matrix for different A/Cs ratios at the same
time (32 min). A good agreement between this work and
the analytical solution3 is evidenced. Apparently, the
smaller the A/Cs ratio, the more advanced the moving
boundary of the dispersed solute, due to smaller excess
amount of solute to be removed by diffusion. Figures 3b
and 3c illustrate the progress of the moving boundary and
concentration distribution at different times for A/Cs ) 10
and 2, respectively. It is noticed that more linear distribu-
tion curves are obtained at A/Cs ) 10 than those at A/Cs )
2, supporting Higuchi’s pseudo steady-state assumption for
A . Cs.1

The amount of solute released into a well-mixed finite
medium with the effective volume ratio, λ ) V/(V1K) ) 5,

Figure 2sCumulative amount of a dispersed solute released per unit surface
area from a slab into a perfect sink (L ) 0.1 cm, D1 ) 1 × 10-6 cm2/s). (a)
A/Cs ) 1.2 and 2; (b) A/Cs ) 5 and 10.

Figure 3sMoving boundary of a solid solute and concentration profile for a
sphere with various A/Cs ratios in a perfect sink (L ) 0.1 cm, D1 ) 1 × 10-6

cm2/s). (a) Time ) 32 min, A/Cs ) 1.2, 2, 5, and 10, (- - - -) Paul and
McSpadeen,3 (s) FEM; (b and c) A/Cs ) 10 and 2, respectively, at various
time intervals.
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10, 20, and ∞, is plotted against Dt/L2 in Figure 4 for (a)
A/Cs ) 2 and (b) A/Cs ) 5, where K ) 1, V and V1 are the
volume of the liquid and the matrix, respectively. The
influence of the effective volume ratio on the release rate
is consistent with previous analytical and experimental
results.19,21 It is shown that the release rate and the final
amount of the solute decrease with the decrease in λ value.
Given a fixed partition coefficient, this observation can be
attributed to quicker concentration build-up and conse-
quently higher diffusional resistance in a smaller volume.
Note that at A/Cs ) 5, the influence of λ becomes more
profound as indicated by larger differences among the
curves in Figure 4b compared to those in Figure 4a. In
addition, more abrupt change in the curves before reaching
the plateau is observed for A/Cs ) 5. This is an indication
of inhibition of release by the saturation of the solute in
the liquid at higher A/Cs ratios. The analysis can also be
carried out in the same way for the effect of K value and
for the solute released into a poorly mixed external finite
volume.20

(b) SpheresFigure 5 shows the amount of the released
solute versus Dt/L2 for a spherical matrix in a perfect sink
by this work compared with the approximate analytical
solutions derived by Lee4 and by Baker and Lonsdale.5 It
is depicted that this work agrees well with Lee’s solution
at A/Cs ) 2 and with Baker and Lonsdale at A/Cs ) 5 and
10. It should be pointed out that the latter, with pseudo
steady-state assumption, is restricted to A/Cs ratio > 3 or
4,16 while the former is suitable for small A/Cs ratios and
t e t*. In contrast, the numerical method presented in this
work, with no restriction, can predict the entire release
process for various A/Cs ratios.

As delineated by Figure 6, the progress of the moving
boundary is much faster in spheres than that in slabs.
Interestingly, due to the spherical geometry, the concentra-
tion profiles are considerably nonlinear compared with that
in the slab even at a high A/Cs ratio. The distribution curve

is gradually changed from convex to concave due to the
relative change rate between the surface area of the
dispersed solute core and the diffusional distance which is
the distance from the moving boundary to the matrix
surface.

The amount of the solute released into a well-mixed
finite volume with the effective volume ratio, λ ) 5, 10,
20, and the sink condition is presented in Figure 7. The
dependence of the release kinetics on the volume ratio and
initial loading is similar to that in planar geometry.

(c) CylindersThe only available analytical solutions for
the cylindrical geometry were developed by Crank23 and
Roseman and Higuchi.2 The former is applicable to A/Cs e
1 and the latter is an approximate solution and only
suitable for A . Cs under the sink condition. No analytical
solution is available for a cylindrical matrix with a small
A/Cs ratio (A > Cs) in either a perfect sink or a finite

Figure 4sInfluence of effective volume ratio on the amount of solute released
from a slab into a well-mixed liquid of finite volume (L ) 0.1 cm, D1 ) 1 ×
10-6 cm2/s, K ) 1). (a) A/Cs ) 2 and (b) A/Cs ) 5. The 100% solute released
is indicated by the plateau of the release curve for λ ) ∞.

Figure 5sFractional release of a dispersed solute from a sphere into a perfect
sink (L ) 0.1 cm, D1 ) 1 × 10-6 cm2/s). Comparison of finite element solution
with semianalytical solution from Lee4 and solution from Baker and Lonsdale
with pseudo steady-state assumption.5

Figure 6sMoving boundary of a solid solute and concentration profile for a
sphere in a perfect sink (L ) 0.1 cm, D1 ) 1 × 10-6 cm2/s). (a) A/Cs ) 10
and (b) A/Cs ) 2.
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volume, and there is little knowledge of the concentration
distribution in the cylinder. Therefore, Crank’s and Rose-
man and Higuchi’s solutions are used here as bounding
cases to verify the finite element results. As shown in
Figure 8, a very convincing agreement has been obtained
between the finite element solutions and the analytical
ones in both lower (A/Cs ) 1) and upper (A/Cs ) 10)
bounding cases. For the A/Cs ratios between these two
extremes, where the analytical solutions are not applicable,
the solutions of this work have filled the gap. It is expected
that the present numerical approach can provide reliable
solutions for a broad range of A/Cs ratios from A/Cs e 1 to
A . Cs.

The progress of the moving front versus time and the
concentration distribution in the cylinder for A/Cs ) 2 and
10 are presented in Figure 9. By comparison of the
concentration profiles of slab, sphere, and cylinder, i.e.,
Figures 3b, 6a, and 9a, some interesting features are

noticed. In the slab, the concentration distribution is near
linear and always convex. The concentration profile be-
comes nonlinear and is gradually changed from convex to
concave with time in the cylinder. The more nonlinear
concentration profile is observed in the sphere with a faster
change from convex to concave than in the cylinder. This
phenomenon can be ascribed to the inherent difference in
the geometry. For diffusional release from matrixes with
a dispersed solute, the concentration distribution depends
on the relative change rate of the surface area of the solid
core and the diffusional distance. The former determines
the supply of the solute for diffusion, and the latter
determines the time for the solute to leave the matrix.
Although surface area and diffusional distance are func-
tions of the moving front in all three geometries, the
dependence of the area on the distance is zero for slab,
linear for cylinder, and quadratic for sphere. In other
words, the relative rate of reduction in the surface area of
the undissolved core is the highest in the sphere and the
lowest in the slab. Consequently, the change from convex
to concave occurs more dramatically in the sphere due to
insufficient solute supply for diffusion.

Figure 10 presents the amount of the drug released into
different external volumes for cylinders with (a) A/Cs ) 2
and (b) A/Cs ) 5. The figures reveal that the influence of
volume ratio on the release kinetics for cylinder is similar
to that for planar and spherical geometries (Figures 4 and
7). These results are particularly useful for prediction of
in vivo release kinetics based on the information of in vitro
release.

(d) Correlation of t* and (Mr/M0)* with A/CssAs afore-
mentioned, the fraction of a solute remaining in the matrix
at t* can be noticeable at small A/Cs. Figure 11 illustrates
the remaining fraction at t*, (Mr/M0)*, as a function of A/Cs
for three geometries, where Mr and M0 denote the remain-
ing and the initial amount of the solute in the matrix,
respectively. (Mr/M0)* drops drastically as A/Cs increases
from 1 to 2 and then decreases gradually till A/Cs ) 5,

Figure 7sInfluence of effective volume ratio on the amount of solute released
from a sphere into a well-mixed liquid of finite volume (L ) 0.1 cm, D1 ) 1
× 10-6 cm2/s, K ) 1). (a) A/Cs ) 2 and (b) A/Cs ) 5. The 100% solute
released is indicated by the plateau of the release curve for λ ) ∞.

Figure 8sFractional release of a dispersed solute from a cylinder into a perfect
sink (L ) 0.1 cm, D1 ) 1 × 10-6 cm2/s, A/Cs ) 1, 2, 5, and 10).

Figure 9sMoving boundary of a solid solute and concentration profile for a
cylinder in a perfect sink (L ) 0.1 cm, D1 ) 1 × 10-6 cm2/s). (a) A/Cs ) 10
and (b) A/Cs ) 2.
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beyond which the reduction in (Mr/M0)* becomes insignifi-
cant. The remaining fraction of the solute is the largest
for the slab and the smallest for the sphere, suggesting that
(Mr/M0)* is a function of diffusion rate. One may infer that
the remainder could increase as the diffusion coefficient,
or the external volume decreases because of the reduced
release rate. (Mr/M0)* can be correlated with A/Cs by

where B and R are constants. The values of B and R for
three basic geometries were obtained from the nonlinear
regression of the data in Figure 11 and are listed in Table
1.

A good linear relationship between the t* and A/Cs is
revealed by Figure 12 for all three geometries. Table 1

summarizes the slope (â) and intercept (γ) of the linear
function (eq 12) together with the correlation coefficients
of the linear regression.

Again, the influence of A/Cs on t* is the greatest for the
slab and the least for the sphere, suggesting that, like (Mr/
M0)*, t* is also dependent on the diffusion rate.

(e) Boundary Layer EffectsIt has been demonstrated
that the stagnant boundary layer is responsible for the
reduced release rate.2,13 It was intended here to develop a
model with consideration of the effect of boundary layer
rather than elaborating its mechanism. From the simula-
tion point of view, the boundary layer acts as a thin layer
coating. Hence, a thin layer element with corresponding
material properties was introduced to the surface of the
matrix of interest. The computed release profile was
compared with the theoretical solution reported by Rose-
man and Higuchi2 for a cylinder in a sink. As depicted in
Figure 13a, the finite element solution matches the ana-
lytical solution well for a solute with diffusion coefficients
in the matrix and in the boundary layer, D1 ) 1 × 10-6

cm2/s, and D2 ) 5 × 10-6 cm2/s, respectively, and the
thickness of the boundary layer, ha ) 0.01 cm. Figure 13b
shows that the release rates of a solute from three basic
geometries (L ) 0.1 cm, A/Cs ) 5) into a finite volume of
liquid (V/V1 ) 10, K ) 2) is reduced in the presence of a
boundary layer of thickness, ha ) 0.01 cm, i.e., ha/L ) 0.1.
This trend agrees with general observations. The degree
of the reduction for the cylinder is slightly greater than
the prediction by Roseman & Higuchi’s model.2 For ex-
ample, at t ) 100 min, the reduction in the fractional
release calculated in this work is ∼4% in the presence of a
boundary layer, whereas it is ∼1% by their model for the
same cylinder in a perfect sink. This is likely a result of
the difference in the volume of surrounding medium, which
is infinite in the analytical solutions and is finite (V/V1 )
10) in the numerical solutions. In a finite volume of liquid,
the drug concentration builds up, contributing to a slower
release rate and a greater boundary-layer effect.

It is interesting to notice a geometry dependence of the
boundary-layer effect. The effect appears the most marked

Figure 10sInfluence of effective volume ratio on the amount of solute released
from a cylinder (L ) 0.1 cm, D1 ) 1 × 10-6 cm2/s, K ) 1). (a) A/Cs ) 2 and
(b) A/Cs ) 5. The 100% solute released is indicated by the plateau of the
release curve for λ ) ∞.

Figure 11sThe fraction of a solute remaining in the matrix at t* for three
geometries in a perfect sink (L ) 0.1 cm, D1 ) 1 × 10-6 cm2/s).

(Mr/M0)* ) B[A/Cs]
-R (11)

Table 1sParameters in Eqs 11 and 12 Evaluated from the Data in
Figures 11 and 12 for Three Basic Geometries in a Perfect Sink

geometry
â

(slope)
γ

(intercept)
r 2

(correlation coefficient) B R

slab 75.57 58.69 0.9986 0.7098 1.086
cylinder 36.76 23.72 0.9949 0.5696 1.348
sphere 25.34 14.60 0.9951 0.4678 1.810

Figure 12sDependence of t* on A/Cs for three geometries in a perfect sink
(L ) 0.1 cm, D1 ) 1 × 10-6 cm2/s).

t* ) â[A/Cs] - γ (12)
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for the slab and the least for the sphere. For example, at t
) 100 min, the reduction in the fractional release in the
presence of a boundary layer is 7.2%, 4.1%, and 1.2% for
the slab, cylinder, and sphere, respectively. This suggests
that the boundary layer effect depends on the relative
release rate in the matrix to that in the boundary layer.
The solute release from the slab is the slowest and thus is
affected most by the boundary layer.

Multidimensional-Release Convex TabletssThe fi-
nite element method presented here can model complex
matrix dosage forms of virtually any shape. However, the
emphasis was placed on matrix tablets here in the hope
that the efforts of this work could facilitate the design of
this popular controlled-release dosage form for oral admin-
istration. For convex tablets with three-dimensional re-
lease, dispersed initial drug loading, and the boundary
layer resistance, no analytical solution has been reported.
This original work provides insight into the release kinetics
in relation to design parameters such as A/Cs ratio and
environmental conditions. The fractional release, Mt/M∞,
of a drug from convex tablets with different A/Cs ratios into
a well-mixed finite volume is depicted in Figure 14, where
M∞ is the amount of drug released at the final stage, V/V1
) 10, K ) 1, and D1 ) 1 × 10-6 cm2/s. Clearly, the time for
the completion of the release increases with increasing A/Cs
ratio, which is consistent with the observation of other
geometries.

Figure 15 shows the moving boundary and concentration
distribution within a tablet with A/Cs ) 2 in a well-mixed
finite volume (V/V1 ) 10, K ) 1, and D1 ) 2 × 10-7 cm2/s).
The concentration profiles are similar to those in the slab.
However, unlike the release into a perfect sink (Figures 3,

6, and 9), the concentration near the surface of the tablet
increases with time, reflecting concentration build-up in
the bulk solution of a limited volume. Such concentration
build-up leads to a smaller driving force for diffusion, i.e.,
the concentration gradient between the matrix and the
medium, and thus lower release rate. This result explains
partly why the in vivo release is slower than the in vitro
one.

Another factor that is often associated with the lower in
vivo release rate is the diffusion boundary layer. The
boundary-layer effect on the fractional release, Mt/M0,
where M0 is the initial amount of the solute, is illustrated
in Figure 16 for a tablet with A/Cs ) 5 in a well-mixed finite
volume (V/V1 ) 10, K ) 2, D1 ) 1 × 10-6 cm2/s, and D2 )
5 × 10-6 cm2/s). As shown by the figure, the release rate

Figure 13s(a) Fractional release of a dispersed solute from a cylinder into
a perfect sink with boundary layer resistance (A/Cs ) 10, L ) 0.1 cm, ha/L
) 0.1, D1 ) 1 × 10-6 cm2/s, D2 ) 5 × 10-6 cm2/s, K ) 2). Comparison of
FE solution with the solution from Roseman and Higuchi with pseudo-steady-
state assumption.2 (b) Effect of boundary layer resistance on the release rate
of a solute from three geometries in a well-stirred liquid of finite volume (λ )
10, A/Cs ) 5, L ) 0.1 cm, D1 ) 1 × 10-6 cm2/s, D2 ) 5 × 10-6 cm2/s, K
) 2).

Figure 14sFractional release of a dispersed drug from a convex tablet with
A/Cs ) 1.2, 2, and 5 into a well-mixed finite volume (λ ) 10, D1 ) 1 × 10-6

cm2/s, K ) 1).

Figure 15sMoving boundary and concentration profile of a dispersed drug
for a convex tablet in a well-stirred liquid of finite volume (λ ) 10, D1 ) 2 ×
10-7 cm2/s, K ) 1).

Figure 16sInfluence of boundary layer resistance on the fractional release
of a dispersed drug from convex tablets into a well-stirred finite volume (A/Cs

) 5, λ ) 10, D1 ) 1 × 10-6 cm2/s, D2 ) 5 × 10-6 cm2/s, K ) 2).
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decreases as the boundary-layer thickness increases. It
should be indicated that the curves in Figure 16 could only
reach ∼83% of the initial loading at a much longer time,
e.g., 25 h, as a result of saturation of the medium.

In reality, polymeric matrix tablets involve not only the
moving boundary of a dispersed drug, but also the moving
boundaries of swelling and erosion. The finite element
model for matrix tablets with swelling and erosion has been
developed by our group for A/Cs e 1.22 Further work on
incorporation of all three moving boundaries into the model
is in progress.

Conclusions
The numerical solutions of differential equations have

been obtained by the finite element method for diffusional
release of a dispersed solute from slab, sphere, cylinder,
and convex tablet into various external volumes. The
kinetics of the entire release process have been presented
for these matrixes with a broad range of A/Cs ratios and
boundary conditions varying from a perfect sink to a finite
volume with boundary-layer resistance. The evolution of
solute concentration profiles in the matrixes has been
revealed. The shape of the concentration profiles depends
on the geometry of the matrixes. The nonlinearity of the
profiles is found to be sphere > cylinder > slab, in the same
order of the release rate. The numerical results for the sink
conditions agree well with the existing analytical solutions.
The existence of boundary-layer resistance reduces the
release rate, and the degree of the reduction increases with
increasing thickness.
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